Chrom-Kobalt

Chrom-Cobalt


Im Bereich der Superlegierungen ist Chrom-Cobalt die, die durch wichtige mechanische Eigenschaften, wie Härte, Beständigkeit gegen Korrosion und hohe Temperaturen gekennzeichnet wird. Diese Art von Material wird hauptsächlich im biomedizinischen und zahntechnischen Bereich verwendet, sowie für ingenieurtechnische Anwendungen (z.Bsp. Flugmotoren).


Die ausgezeichneten mechanischen Eigenschaften des Chrom-Cobalt, zusammen mit der Verarbeitbarkeit und der hervorragenden Beständigkeit gegen Korrosion, machen es optimal für die Herstellung von Zahnprothesen und medizinischen Prothesen im Allgemeinen.

Technische Daten des Materials und physikalische und chemische Eigenschaften

Technical Data Test Method  
Typical achievable part accuracy, small parts - - - - - - - approx. ± 20 – 50 μm
Typical achievable part accuracy, large parts - - - - - - - approx. ± 50 – 200 μm
Min. wall thickness [1] - - - - - - - approx. 0.3 mm
Surface roughness [2] as built,
MP1 Performance (40 μm)
- - - - - - - Ra 7 - 10 μm, Rz 35 - 50 μm
Surface roughness [2] after polishing - - - - - - - Rz up to < 1 μm
Physical and Chemical properties of parts Test Method  
Material composition - - - - - - - Co (60 - 65 wt-%)
Cr (26 - 30 wt-%)
Mo (5 - 7 wt-% )
Si (≤ 1.0 wt-%)
Mn (≤ 1.0 wt-%)
Fe (≤ 0.75 wt-%)
C (≤ 0.16 wt-%)
Ni (≤ 0.10 wt-%)
Relative density - - - - - - - approx. 100 %
Density - - - - - - - approx. 8.3 g/cm3
Mechanical properties of parts at 20°C (68°F) Test Method As Built Stress Relieved [3]
Tensile strength [4] in horizontal direction (XY) ISO 6892-1:2009(B)
Annex D
1350 ± 100 MPa
196 ± 15 ksi
1100 ± 100 MPa
160 ± 15 ksi
Tensile strength [4] in vertical direction (Z) ISO 6892-1:2009(B)
Annex D
1200 ± 150 MPa
174 ± 22 ksi
1100 ± 100 MPa
160 ± 15 ksi
Yield strength (Rp 0.2 %) [4] in horizontal direction (XY) ISO 6892-1:2009(B)
Annex D
1060 ± 100 MPa
154 ± 15 ksi
600 ± 50 MPa
87 ± 7 ksi
Yield strength (Rp 0.2 %) [4] in vertical direction (Z) ISO 6892-1:2009(B)
Annex D
800 ± 100 MPa
116 ± 15 ksi
600 ± 50 MPa
87 ± 7 ksi
Modulus of elasticity [4] in horizontal direction (XY) ISO 6892-1:2009(B)
Annex D
200 ± 20 GPa
29 ± 3 Msi
200 ± 20 GPa
29 ± 3 Msi
Modulus of elasticity [4] in vertical direction (Z) ISO 6892-1:2009(B)
Annex D
190 ± 20 GPa
28 ± 3 Msi
200 ± 20 GPa
29 ± 3 Msi
Elongation at break [4] in horizontal direction (XY) ISO 6892-1:2009(B)
Annex D
(11 ± 3) % min. 20%
Elongation at break [4] in vertical direction (Z) ISO 6892-1:2009(B)
Annex D
(24 ± 4) % min. 20%
Hardness [6] EN ISO 6508-1 approx. 35 - 45 HRC - - - - - - -
Fatigue life [5] max. stress to reach 10 million cycles ASTM E466:1996 approx. 560 MPa
81 ksi
- - - - - - -
Fatigue life [5] max. stress to reach 1 million cycles ASTM E466:1996 approx. 660 MPa
96 ks
- - - - - - -
Thermal properties of parts Test Method As Built
Coefficient of thermal expansion over 20 - 500 °C (68 - 932 °F) - - - - - - - typ. 13.6 x 10-6 m/m °C
typ. 7.6 x 10-6 in/in °F
Coefficient of thermal expansion over 500 – 1000 °C (932-1832 °F) - - - - - - - typ. 15.1 x 10-6 m/m °C
typ. 8.4 x 10-6 in/in °F
Thermal conductivity at 20 °C (68 °F) - - - - - - - typ. 13 W/m °C
typ. 90 Btu in/(h ft2 °F)
Thermal conductivity at 300 °C (572 °F) - - - - - - - typ. 18 W/m °C
typ. 125 Btu in/(h ft2 °F)
Thermal conductivity at 500 °C (932 °F) - - - - - - - typ. 22 W/m °C
typ. 153 Btu in/(h ft2 °F)
Thermal conductivity at 1000 °C (1832 °F) - - - - - - - typ. 33 W/m °C
typ. 229 Btu in/(h ft2 °F)
Maximum operating temperature - - - - - - - approx. 1150 °C
approx. 2100 °F
Melting range - - - - - - - 1350 - 1430 °C
2460 - 2600 °F